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Functions for Molten Saltsf 
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and 

M .  P. TOSI 
lstituto di Fisica dell'Universit2, Roma, Italy 

(Receiwd May 7, 1976) 

The linearized hydrodynamic equations for a binary ionic fluid, with specific reference to 
a dissociated molten salt, are used to evaluate correlation functions of local fluctuation 
variables and the corresponding response functions. Previous results for the instantaneous 
correlation functions are extended and connected with thermodynamic fluctuation theory. 
Different dynamical behaviours, depending on the relative magnitude of the relaxation 
frequency for charge fluctuations and the sound wave frequency, are demonstrated. When 
~ X U / C  > ck, charge fluctuations are uncoupled from mass fluctuations, the latter being 
isomorphous to those of a one-component neutral fluid. Kubo relations for the transport 
coefficients are derived in this regime. When 4nulc a ck, the behaviour of the ionicfluid 
becomes isomorphous to that of a neutral mixture, with electrical conduction playing a 
role analogous to interdiffusion and contributing, in particular, to the damping of sound 
waves. An interpolation formula between these two limiting behaviours of the relaxation 
frequencies is also derived. The consequences of these results for the light scattering spectrum 
of an ionic fluid are briefly discussed. 

1 INTRODUCTION 

'fie aim of the present work is to provide a comprehensive analysis of the 
correlation functions for fluctuations in the hydrodynamic regime for a 
realistic example of a charged fluid, that is a binary fluid of polarizable ions, 
with specific reference to a completely dissociated molten salt. A similar 
analysis for a two-component neutral fluid has been given recently by 
Cohen, Sutherland and Deutch' and by Bhatia, Thornton and March,2 but 

tBased on work performed under the auspices of the Gruppo Nazionale di Struttura della 
Materia del Consiglio Nazionale delle Ricerche. 
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306 P. V. GIAQUINTA, M. PARRINELLO A N D  M. P. TOSI 

the peculiarities whch arise from the long range nature of the Coulomb 
interaction make it necessary to examine independently the case of the 
charged fluid. 

Some of these characteristics have already been pointed ou t  by Martin3 
in his discussion of a one-component charged fluid neutralized by a uniform, 
inert background. The charge relaxation mode frequency tends to a con- 
stant value, 4 n a / ~ ,  rather than to a value vanishing as k’at long wavelengths. 
As a consequence, while the usual Kubo formula for the thermal conduc- 
tivity‘ still holds, the electric conductivity and the thermoelectric coefficient 
are related to the Kubo limit of “screened” response functions. This form of 
the Kubo relations takes account of internal field correction terms in the 
driving forces. 

In the present case the two-component nature of the fluid implies, of 
course, that the mass density and the charge density are distinct fluctuation 
variables, so that viscosity and electrostriction also play a role. As we shall 
see, the coupling between charge and mass fluctuations reflects directly the 
singularity in the Coulomb interaction. Physically different results are 
obtained in the two limiting situations 4na/c g ck and 47cu/~ B ck (here, 
(I is the electric conductivity, E the dielectric constant, and c thelong-wave- 
length sound velocity). In the former case, the time correlation functions are 
formally similar to those for a neutral mixture,’ and in particular electric 
conduction is found to contribute to sound wave damping as is the case for 
interdiffusion in the mixture. However, this behaviour cannot be extra- 
polated to infinite wavelength, as signalled by the fact that the Kubo rela- 
tions would be violated. In the opposite limit 4 n u l ~  > ck, on the other hand, 
electrical effects do not contribute to the damping of sound waves. Numeri- 
cal estimates indicate that this latter situation holds for molten salts at 
sonic wavelengths, but it appears that the transition from one regime to 
the other could be followed in sound attenuation or light scattering experi- 
ments on suitably chosen ionic fluids of low conductivity arid high electro- 
striction. 

With regard to polarization effects, very drastic simplifications are per- 
missible for the fluid that we are considering. The vast difference in excita- 
tion energies for the electrons and for the ions ensures that, while the ions 
behave hydrodynamically, the polarization does not but enters only through 
a “high frequency” dielectric constant E .  Obviously, in the c u e  of a partially 
associated ionic fluid or of an electrolytic solution, dynainical screening 
effects and diffusion of polarization may also occur. Caution should thus be 
exercized in applying our detailed results to more complex ionic systems. 

The outline of the paper is briefly as follows. In section 2 weintroduce 
the phenomenological equations of linearized hydrodynamics for the two- 
component charged and sketch the technique, well established since 
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CORRELATION FUNCTIONS FOR MOLTEN SALTS 307 

the work of Kadanoff and Martin,’ by which one proceeds to derive the 
time correlation functions and the response functions of the liquid to a 
slowly varying perturbation, described in terms of an electric potential and 
of changes in pressure, temperature and electrochemical potential. In 
section 3 the instantaneous correlation functions entering the calculation 
are determined from the static limit of the hydrodynamic equations, with the 
help of Poisson’s equation, the connexion with the results of thermodynamic 
fluctuation theory for a neutral mixture’ being discussed in an Appendix. 
The analysis of the dispersion relation and the detailed expressions for the 
correlation spectra and the response functions are reported in section 4, 
while section 5 discusses the expressions of the transport coefficients in 
terms of response functions in the Kubo limit and section 6 discusses the 
optical properties in the appropriate low frequency region. 

2 LINEARIZED HYDRODYNAMIC EQUATIONS AND TIME 
CORRELATION FUNCTIONS 

The linearized hydrodynamic equations for a molten salts.6 comprise the 
mass continuity equation, 

z f ? u  + p $ ( r ,  t) = 0; 
at 

the Navier-Stokes equation from which we retain only the longitudinal part, 

the continuity equation for the charge density, 

and the heat transport equation, 

pT- as(r t) = KV’T(r,t) - 
at (2.4) 

In these equations p(L,t) and q(r,t) are the mass density and the free charge 
density; +(L,t) is the divergence of the local momentum per unit mass, and 
j(t,t) is the free-conduction current density; p(Z,t), T(r,t) and s(r,t) are the 
focal pressure and temperature and the local entropy per unit mass; and 
p = m+n+ + m-n- = n(m+ t m-) = nm is the mean mass density. The 
transport coefficients entering the equations are the longitudinal viscosity 
pb = jt,~ t 3, where q and 3 are as usual the shear and bulk viscosities; the 
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308 P. V. G I A Q M A ,  M. PARRWELLO AND M. P. TOSI 

electric conductivity o, the thermal conductivity K ,  and the thermoelectric 
coefficient Q. 

The form of Eqs. (2.1)-(2.4) is the same as for a two-component neutral 
fluid,’ when the charge density and the electric current are replaced by the 
local concentration and the diffusion current, and alo is replaced by the 
appropriate transport coefficient involving the thermal diffusion ratio. The 
crucial difference between the charged fluid and the neutral fluid lies in the 
expression for the current, which in the present case is 

(2 .5)  
1 Q 

e -  

having made use of the Onsager symmetry relation for the thermoelectric 
coefficients. Here.6 

j(r ,  t) = o[E(r, t) - - vcl(r* t)] - ~ T ( I ,  1). 

is the electrochemical potential in terms of the local chemical potentials per 
unit  mass of the two components. On the other hand, the electric field 
E(r,t) is related to the total charge density by Poisson’s equation, 

(2.7) 

where 6 is the dielectric constant. We can also write for the change in 
electrochemical potential 

4R y . ULt) = 4nq,(r,t) = -q(r.t) 

so that Q. (2.3) becomes 

Here, the coefficient 

clearly describes the thermoelectric effects, and the coefficient 

(2.10) 

(2.11) 

describes the electrostrictive effects. The term - 4noq([,t),/c in the above 
equation, with its “anomalous” dependence on the wabelength of the 
fluctuation, is peculiar to the Coulomb fluid: the corresponding equation 
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CORRELATION FUNCTIONS FOR MOLTEN SALTS 309 

for the neutral mixture' contains only terms in DV2c(r,t), c(r,t) being the 
local concentration and D the interdiffusion coefficient. 

By expanding the pressure and entropy density fluctuations in a form 
analogous to eqn (2.8), eqns (2.2) and (2.4) are easily written 

1 (LT -- ae(r't) - - -vZp(r,t) - - vZT(r,t) + bv*$(r,t) - vv*q(r,t) (2.12) 
at P Z K T  pKT 

and 

Here, K, is the isothermal compressibility, y = C,/C, is the specific heat 
ratio, aT is the thermal expansion, and use has been made of the thermo- 
dynamic identities 

and 

(2.14) 

(2.15) 

(2.16) 

These involve the neutrality condition through the assumption that the 
internal electric potential is unchanged under changes of p or T at constant 
9. 

Equations (2. I) ,  (2.9), (2.12) and (2.13) give the basic form of the linearized 
hydrodynamic equations that we shall use in the subsequent evaluation of 
the correlation and response functions of the fluid. Denoting the four 
variables p(r,t), q(r,t), T(r,t) and #(r,t) by A,(r,t) with i = 1, 2, 3 and 4 
respectively, and introducing their Fourier-Laplace transforms by 

(0 

A!(k,z) = f dr exp(ik.r) f dt exp(-zt)A,(r,t) (2.17) 
0 

the hydrodynamic equations are compactly written 

(2.18) 

(2.19) 
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Here, the matrix M(k,z)  is explicitly given by 

M(k,z)  = 

P. V. GIAQUINTA, M. PARRMELLO A N D  M. P. TOSl 

1. 0 0 
z + 4na(k) /c  o l  k2 

4nylTu(K)/ (cpCp)  z + v ( .  + u J 2 T ) k z / ( p C p )  
- Uk' -a,k'/(pK,) 

with 

(2.21) 

The formal solution of Eq. (2.18) can be written 

At(kz) = z1 Nl,(k7z) AJ(k) (2.22) 
1 

where N,(k,z) = lMll,/lM, \MI, being the cofactor of M,(k,z) in the 
determinant 1 MI of the matrix M(k,z). The Fourier-Laplace transforms of 
the correlation functions are then obtained as 

(2.23) 

where 

= <A,(k) 'J(-k)> (2.24) 

are the instantaneous correlation functions. The van Hove functions 
S,,(k,w) follow from 

SIJ(k ,w)  = 2Re S, , (k , - iw)  ( i ,  j = 1.2,3; i = j = 4 )  (2.25) 

and 

S,,(k,w) = 2iJm S , (k , - iw)  (i = 1,2,3 and j = 4) (2.26) 

The response functions of the fluid can then be calculated through the 
fluctuation-dissipation theorem and the Kramers-Kronig relations. 

Before we carry out this program it is, however, necessary to discuss the 
instantaneous correlation functions introduced in IZq. (2.24 1. 

3 INSTANTANEOUS CORRELATION FUNCTIONS 

In the neutral fluid away from a critical point, it can be safely assumed that 
the range of intermolecular correlations is much shorter i.han k-' in the 
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CORRELATION FUNCTIONS FOR MOLTEN SALTS 31 1 

hydrodynamic regime, and one can use thermodynamic fluctuation theory 
to determine the limiting values of the instantaneous correlation functions, 
as was first done for mixtures by Kirkwood and Buff.' The same theory 
cannot be straightforwardly applied to correlations involving charge density 
fluctuations, and indeed S,,(k) is well known9 to vanish as k Z  as a con- 
sequence of the long range nature of the Coulomb interaction. One can, 
however, determine this correlation function directly with the help of 
Poisson's equation, and similarly determine the other correlation functions 
from the static limit of the hydrodynamic equations in the presence of an 
external perturbation. 

To evaluate S,,(k) we consider the fluid in the presence of an external, 
static charge density qe(r), when the Poisson equation reads 

r 

The hydrodynamic equation (2.9) may then be written 

having made use of the other hydrodynamic equations and in particular 
of the relation 

VIP([) = - P ' u K T V * ~ ( ~ )  (3.3) 
which follows from (2.12). Equation (3.2) is solved to find 

This expression for the inverse screening length is soon shown to reduce for 
the one-component Coulomb fluid to the usual expression in terms of the 
isothermal compressibility.-' Equation (3.4) thus embodies the perfect 
screening property of the conducting fluid, and through the fluctuation- 
dissipation theorem yields 

this result being in fact correct to order k'. 
A similar static calculation can be carried out for the other instantaneous 

correlation functions. From Eq. (3.3) we immediately see that S,,(k) is 
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312 P. V. G I A Q W A ,  M. PARRINELLO AND M. P. TOSI 

related to S,,(k) to order k2, 

(3.7) 

Similarly, we find 

Si, (k) = p’k,TKT, (3.8) 

S3,(k) = kBT2/(pCu) (3.9) 
and 

S,,(k) = - kBTk’/p, (3.10) 

while S2,(k) is of order k‘ and S,,(k) is of order at least k;. However, to 
determine these latter correlation functions, as well as higher order terms in 
Eqs. (3.7)-(3.9), it would be necessary to go beyond the hydrodynamic 
equations. 

Finally, we report the expressions for the partial ionic structure factors 
in the long wavelength limit, which follow by a straightforward calculation 
from the results given above. We find 

2m- en2uKT + A , (3.1 1) 1 S, + (k) = nkBTKT + 

1 S. (k )  = nk,TK, + +2m+en2uKT + A , (3.12) 

and 

+en2uKT(m+ - m-) + A , (3.13) 1 S ,  - ( k )  = nkBTKT + 

where A is an unknown quantity determined by the unknown term oforder 
k 2  in S I I  (k). The equality of these structure factors fork -+ 0 is a well known 
consequence of charge neutrality. The first term in each square bracket 
agrees with the results obtained by Abramo, Parrinello and Tosilo on a 
plasmon-like model. 

The connexion between the above expressions for the paf’al ionic struc- 
ture factors and the thermodynamic fluctuation theory of Kirkwood and 
Buff * is discussed in the Appendix. 

4 VAN HOVE FUNCTIONS AND RESPONSE FUNCTIONS 

L’e are now in a position to evaluate the correlation spectra and the response 
functions of the Coulomb fluid in the hydrodynamic region. We write the 
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CORRELATION FUNCTIONS FOR MOLTEN SALTS 313 

dispersion relation of the fluid in the form 

IM(k,z)l = z + - + z , k z  (z + z z k z ) ( z  - ick + r k 2 ) ( z  + ick + r k ’ )  ( ) 
(4.1) 

where c = [ ~ / ( P K , ) ] ” ~  is the adiabatic sound velocity, and proceed to 
evaluate the coefficients of the k2  relaxation terms by comparison with 
(2.20) under the assumption that these terms are small compared with ck. 
We must distinduish different regimes depending on the relative magnitude 
of the long-wavelength relaxation frequency 4 n a l ~  of the charge fluctuation 
mode and the sound wave frequency. 

(i) Kubo regime (4 no/€ >> ck). In this regime, which is relevant for the 
derivation of Kubo relations for the transport coefficients, the charge fluctu- 
ation mode is uncoupled from the mass and temperature fluctuation modes, 
which are in fact analogous to those of a one-component neutral fluid.’ We 
find 

and 

where 

and 

It should be noticed that the thermoelectric effects described b y 4  enter the 
charge fluctuation mode but do not affect the thermal mode. This result, 
which is confirmed by the Kubo relations to be derived in the next section, is 
at  variance from the results of Corkum and McLennan,” who effectively 
assumed z, = 0. 

(ii) Two-component regime ( 4 n a l ~  < ck). In this regime all the relaxation 
frequencies are smaJ compared with the sound wave frequency and the 
behaviour of the chkged fluid becomes similar to that of a two-component 
neutral fluid,’ with electrical conduction playing the role of interdiffusion. 
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314 P. V. GIAQUINTA, M. PARRINELLO A N D  M. P. TOSI 

We find 

2 , = u 7 + - - 9  (4.7) 

z2 = 4 P C P )  (4.8) 

(4.9) 

and 

r = i[b + ( y  - l)K/@Cp) + p K ~ p ’ : ’ 0 ] ,  

so that both electrostrictive and thermoelectric effects contribute to the 
damping of sound waves. 

(iii) Intermediate regime (471uIc - ck). By analysing this case one finds an 
interpolation formula between the two previous limiting cases, which reads 

and 

2i,2u . (4.11) 1 (Ck)2 
(ck)’ t ( 4 7 r u v y K T p  

With typical values for molten salts, that is U / E  - 1 ohm-’ cm-’ and 
c - lo5 cm sec-I, one finds a transition wavelength of the order of a few 
interionic distances. The hydrodynamic behaviour of these systems should 
thus be governed by Eqs. (4.2)-(4.4), but it may be possible to observe the 
transition from one regime to the other in ionic systems of low UIE and 
high i.. 

We give below the detailed expressions of the correlation spectra and the 
response functions, with special emphasis on the Kubo regime appropriate 
to molten salts. 

4.1 Correlation functions 

With the relaxation frequencies determined in Eqs. (4.2)-(4.4) or in 
Eqs. (4.7)-(4.9) to nrder k2, the explicit solution of Q. (2.23) yields the 
Fourier-Laplace transforms of the correlation functions in the general form 

L 

with z(k) = 4nuIc + z, k2. Correspondingly, the correlation spectra take 
the general form 
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I+ Tk’ + r k z  
+ clJ(k)[(w + c k y  + (rk’)’ (w - ck)’ + (TkZ)l 

w + ck - w -  ck -1 1 (4.13) 
w + ck)’ + (rk’)’ (w - ck)’ + (rk’)’ 

+ (Ck)-’E,j(k) 

with 

= DIJ(k) - rk’CIJ(k)’ (4.14) 

The values of the functions defining the strength of the various modes are 
collected in Table I for the Kubo regime and in Table I1 for thc two-compo- 
nent regime. Of several entries in Table I we give only the ,order in k,  as 
their determination would require the evaluation of the mode frequencies to 
order k4 and higher order terms in the instantaneous correlation functions. 
The same comment applies to higher-order terms for the other entries. On 
the other hand, it is seen from Table I1 that in the two-component regime 
the charge fluctuation mode contributes terms of order kZ to bothS,,(k,w) 
and S,,(k,w). In fact, the structure of the correlation spectra in this regime 

TABLE I1 
Mode strengths in the correlation functions ( 4 n d c  a ck)t 

S i jkw)  fij(k) Aij(k) Bij(k) Cij(k) 

y-’ 1 - y-’ 

?The value of r is given in Eq. (4.9). Missing entries are of higher order in the transport 
coefficients. 
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CORRELATION FUNCTIONS FOR MOLTEN SALTS 317 

is wholly analogous to that reported by Bhatia, Thornton and MarchZ for 
a two-component neutral liquid. 

4.2 

We define, as usual the response function Xij(k,o) as relating the change in 
the mean value of the variable A,(k,t) to a weak external perturbation 
coupled to the variable Aj (k,t). The fluctuation-dissipation theorem yields 

Response functions and dielectric function 

w 
Jm Xij(k,w) = -Sij(k,w) (i,j = 1, 2, 3; i = j = 4) 2kBT (4.15) 

whence, using the Kramers-Kronig relations 

trn dw‘ JmXij(k,d) ReXij(k,o) - Xij(k,m) = - I, x w ’ - - w  
(4.16) 

we have 

y-’(4r - b)kz y - ’ ( 3 r  - b)k’ 
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318 P. V. GIAQUINTA, M. PARRINELLO AND M. P. TOSI 

Detailed expressions are immediately obtained from Eqs. (3.6)-(3.9) and 

Of course, by “infinite” frequency we mean frequencies which are much 
higher than sound wave frequencies and yet muchsmaller than the frequen- 
cies of the other real excitation processes of the system. In practice, since 
the hydrodynamic equations do not contain the possibility of a plasmon- 
like mode of the ionic system, the upper cut-off frequency must be much 
smaller than the frequency of this possible mode, of order l O I 3  sec-l. Thus, in 
deriving the dielectric function E(k,W), which is related to the totalcharge 

Eq. (4.12). 

response X(k,w) by 

we must set 

We can also use 

(4.18) 4n 
k2 E-’(k,W) = 1 - -X(k,w), 

X(k,a) = ( 1  

X(k,w) - X(k,a 

kZ 
- (4.19) 

= E-’XZ2(k,w) (4.20) 

on account of the fact that X,,(k,w)describes the response of thefree charge, 
with X,,(k,m) = 0. From Eq. (4.17) we find 

(4.21) 

neglecting the thermal conduction mode and the sound wave mode which at 
finite w contribute only terms of order k.6 We thus find 

e(k,w) = E + 4triu/w (W # 0) (4.22) 

in accord with the well known expression. 
On the other hand, in the static case the contributions of the thermal 

mode and of the mass fluctuation mode become of order k4. Use of the 
fluctuation-dissipation theorem yields directly 

Xz,(k,O) = (k,T)-’S22(k) (4.23) 

whence 

c(k,O) = ~ ( 1  + k;/k’). (4.24) 

Similar caution in the static limit is necessary for the other response 
functions. 
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CORRELATION FUNCTIONS FOR MOLTEN SALTS 319 

4.3 Screened response functions 

The screened response functions, that we shall need for the subsequent dis- 
cussion of the Kubo relations, relate the change in the mean value of a 
fluctuation variable to the internal value of a weak perturbation coupled to 
another fluctuation variable, which differs from the external perturbation 
because of screening. The screened response function fAB (k,w) for two 
generic variables denoted by A and B can be evaluated by3 

(4.25) 

where qt denotes the fluctuation in the total charge density.t In the particular 
case where one of the variables is the total charge density, this expression 
simplies to 

x A q l ( k , w )  = E(k,w)XAqt(k,w) (4.26) 

47c 
-fAB(k,W) = X A B ( ~ W )  4- 7 k E(k,O)XAqt(k'W)XqtB(k,W) 

on account of Eq. (4.18). 
On taking in the present case XAq1(k,co) = 0 for A # qt,  we have 

x , q t ( k , W )  = E - ' X A z ( k . W )  (A # qt) (4.27) 

which allows the explicit evaluation of the screened response functions from 
the results reported in the previous sections. On the other hand, we have 

k2 
47c 

-f(k,w) = E ( k , w ) X ( k , w )  = -[E(k,W) - I]. (4.28) 

5 KUBO RELATIONS 

It is evident from the foregoing discussion that the longitudinal viscosity and 
the thermal conductivity in the ionic fluid are related to the Kubo limit of 
the correlation spectra in exactly the same manner as in a neutral one- 
component fluid, that is 

tEquation (4.25) includes in the internal field correction the screening of the Coulomb 
potential but still excludes thermodynamic corrections to the driving forces (see Kubo12 for a 
discussion on the one-component charged fluid). These two alternative definitions of the 
internal fields are, however, equivalent to the order in k of present interest. 
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and 

(5.3) 

On the other hand, as discussed in detad by Martin,' meaningful Kubo 
relations for electrical transport coefficients can be obtained only from the 
screened response functions. One easily finds from the reijults reported 
above the following relations: 

r 1 

and 

r 1 

lirn w 3  lirn k-' Jrn X,2(k,  
w - 0  [k-0 

lim k - *  Jrn X2,(k,u) 

(5.4) 

Kubo relations are in fact more usefully derived in terms of current 
response functions. In particular, introducing the heat flux J(r,t) through 

(5.7) 

we see that we can evaluate response functions involving this flux, of the 
type XA,(k,w), through 

and similarly for XJJ(k,U). The relation (5.2) becomes 

lirn w- '  Jm XJ,(0,w) = TK (5 .9)  
W - 0  

and, in addition, one has the relation 

lirn w- l  Jrn XJJ(0,w) = T; (5.10) 
Y-0 

with ir = K + a2/(To). The meaning of these relations becomes apparent if 
one notices that the phenomenological equation relating the heat flux to 
the driving forces reads5 

J = Q(E - Vp) - i V T  (5.1 1) 

so that the screening effected in eqn (5.10) separates from the observed 
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CORRELATION FUNCTIONS FOR MOLTEN SALTS 32 1 

thermal conductivity K the term -(.’/(To) arising from the dynamical 
coupling between temperature and charge fluctuations. On the other hand, 
the thermoelectric coefficient a is given. directly by the relation 

(5.12) 
0 - 0  

where j, is the total charge density current. 

6 LIGHT SCATTERING SPECTRUM 

We conclude this analysis of hydrodynamic behaviour by a brief dis- 
cussion of the light scattering spectrum of theionic liquid. As k well known, 
this is determined by the spectrum S(k,o) of correlations between fluctua- 
tions in the dielectric function. By writing these fluctuations in the form 

we have 

The results reported in section 4 yield for the spectrum in the Kubo regime 
’ ak’ 

+ 
w a  + z’(k) 

1 rk’ 

w - ck - + K T p l k s T B k  [ w + ck 
y c (w + ck)2 + (rkZ)2 (w - ck)’ + (rk2)’ 

with 
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having omitted the term arising from S,,(k;w), which is of order k‘. Thelast 
three terms on the right-hand side of eq. (6.3) give, as in a one-component 
neutral fluid, a Rayleigh peak determined by thermal fluctuations and a 
Brillouin doublet distorted from a Lorentzian shape by coupling between 
thermal and pressure fluctuations. The new feature of the charged fluid is the 
contribution of charge fluctuations to the Rayleigh peak, given by the first 
term in eq. (6.3),  which differs qualitatively from the thermal contribution 
because its width becomes constant at  long wavelength. 

In the opposite limit 4nal~ K ck, the light scattering spectrum has again 
a structure similar to eq. (6.3). The new qualitative feature is the broadening 
of the Brillouin doublet which arises from the coupling between mass and 
charge fluctuations, according to eq. (4.9). 

Appendix. Partial Ionic Structure Factors and 
Thermodynamic Fluctuation lheory 

The partial structure factors at long wavelength represent correlations be- 
tween fluctuations in the numbers of particles from the average, and thermo- 
dynamic fluctuation theory yields’ for a two-component fluid 

Here, 5 denotes the component different from a, and p, denotes as in the 
main text the chemical potential of component aperunit mass. This relation 
can be inverted for a neutral mixture to yield 

whence, in terms of variables p = mln ,  + m2n2 and x = n I  -- n2 we find: 
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and 

(A@ 

If we apply these relations to an ionic fluid, the expression (A.2), as well 

(A.7) 

as (A.6), diverges on account of charge neutrality yielding 

lim k-0 S,,(k) = n k,TKT. 

However, we shall now see that the expressions (3.1 1 H3.13) of the partial 
ionic structure factors to order k2, when used in Eqs. (A.3HA.5), yield 
agreement with the thermodynamic values of the left-hand side of these 
equations. 

Tndeed, from the Gibbs-Duhem relation for the ionic fluid,6 which to 
first order in the electromagnetic terms reads 

P16Pl + P 2 6 h  = -@T + 6P ( A 8  

one finds at once 

and 

(A.lO) 

Similarly, using Eq. (A.8) in the differential of the electrochemical potential 
p defined in Eq. (2.6), one finds 

(A. 11)  

The same results follow from Eqs. (A.3HA.5) by using the expressions 
(3.1 1)-(3.13) of the partial ionic structure factors. 
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